CRYSTAL STRUCTURES OF SOLIDS

A PART OF

B.Sc. Physics (Hons.) Old syllabus: Paper-IX

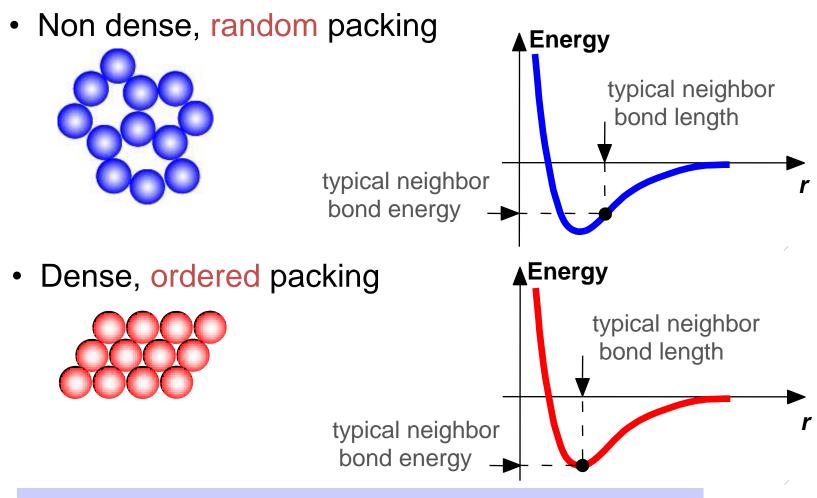
B.Sc. Physics (Hons.) Semester: V (CBCS); Course: CC-XII

DR. SHYAMSUNDAR GHOSH
Assistant Professor,
Department of Physics,
Bejoy Narayan Mahavidyalaya,
Hooghly-712147

Question....?

- When all the metals are known to be crystalline and have metallic bonding then why different metals exhibit different properties (e.g. Density, strength, etc.).....?
- Many questions about metal can be answered by knowing their <u>Crystal</u> <u>STRUCTURE</u> (the arrangement of the atoms within the metals).

Energy and Packing



Dense, ordered packed structures tend to have lower energies.

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
 - -many ceramics
 - -some polymers

Noncrystalline materials...

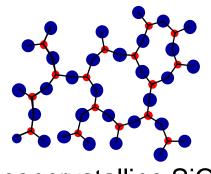
- atoms have no periodic packing
- occurs for: -complex structures

-rapid cooling

"Amorphous" = Noncrystalline

Adapted from Fig. 3.40(a), Callister & Rethwisch 3e.

Oxygen

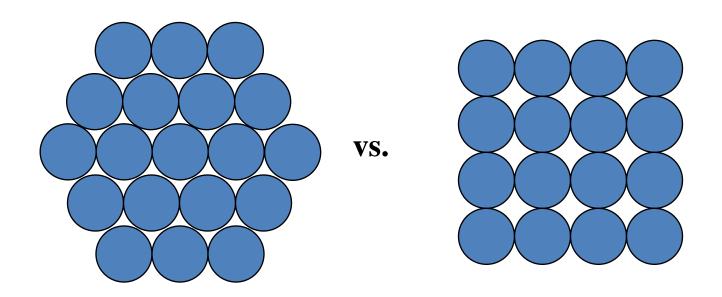


noncrystalline SiO₂ Adapted from Fig. 3.40(b), Callister & Rethwisch 3e.

Metallic Crystal Structures

 How can we stack metal atoms to minimize empty space?

2 - Dimensions



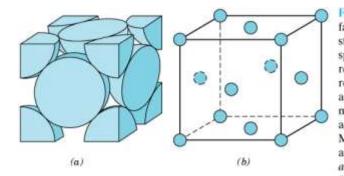
Now stack these 2-D layers to make 3-D structures

Metallic Crystal Structures

- Tend to be densely packed.
- Reasons for dense packing:
 - Typically, only one element is present, so all atomic radii are the same.
 - Metallic bonding is not directional.
 - Nearest neighbor distances tend to be small in order to lower bond energy.
 - Electron cloud shields cores from each other
- Have the simplest crystal structures.

SOME DEFINITIONS ...

- Lattice: 3D array of regularly spaced points
- Crystalline material: atoms situated in a repeating 3D periodic array over large atomic distances
- Amorphous material: material with no such order
- Hard sphere representation: atoms denoted by hard, touching spheres
- Reduced sphere representation
- Unit cell: basic building block unit (such as a flooring tile) that repeats in space to create the crystal structure



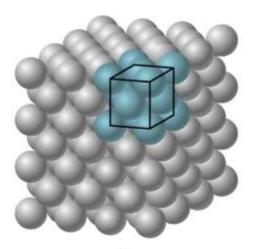


FIGURE 3.1 For the face-centered cubic crystal structure: (a) a hard sphere unit cell representation, (b) a reduced-sphere unit cell, and (c) an aggregate of many atoms. (Figure c adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 51. Copyright @ 1964 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.)

CRYSTAL SYSTEMS

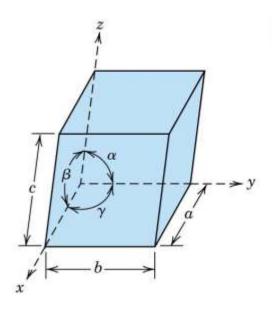
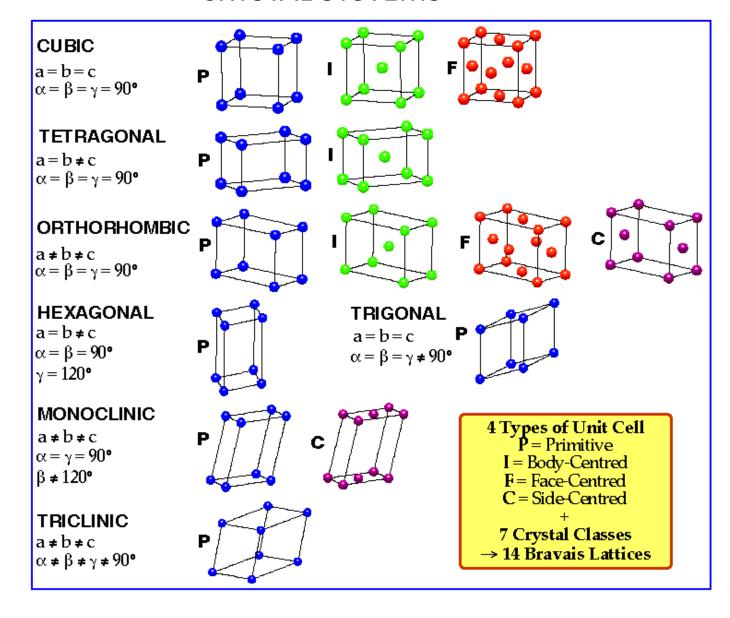


FIGURE 3.4 A unit cell with x, y, and z coordinate axes, showing axial lengths (a, b, and c) and interaxial angles $(\alpha, \beta, \text{ and } \gamma)$.

- Based on shape of unit cell ignoring actual atomic locations
- Unit cell = 3-dimensional unit that repeats in space
- Unit cell geometry completely specified by a, b, c & α , β , γ (lattice parameters or lattice constants)
- Seven possible combinations of a, b, c & α , β , γ , resulting in seven crystal systems

CRYSTAL SYSTEMS



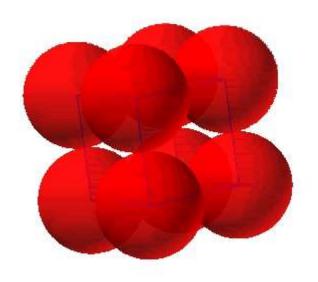
The Crystal Structure of Metals

- Metals and Crystals
 - What determines the strength of a specific metal.

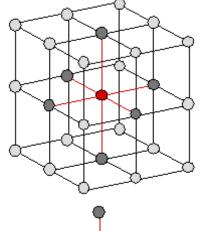
Four basic atomic arrangements

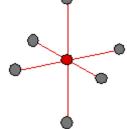
Simple Cubic Structure (SC)

- Rare due to low packing density (only Po has this structure)
- Close-packed directions are cube edges.



Coordination # = 6 (# nearest neighbors)



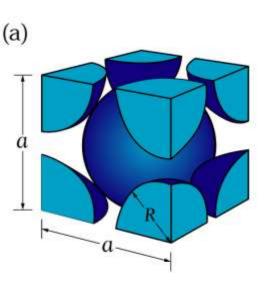


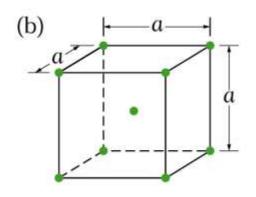
No. of atoms/unit cell: 8 corners x 1/8 = 1

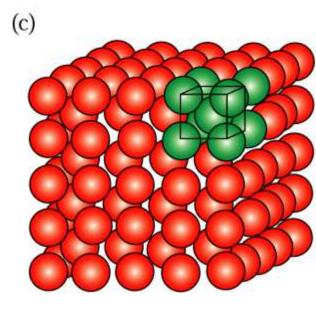
(Courtesy P.M. Anderson)

2of 4 basic atomic arrangements

2. Body-centered cubic (bcc)





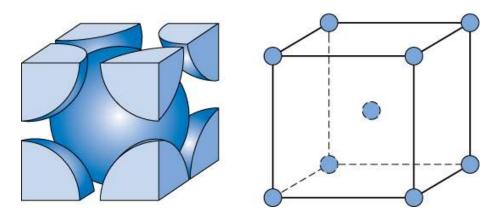


Body Centered Cubic Structure (BCC)

- Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

Coordination # = 8

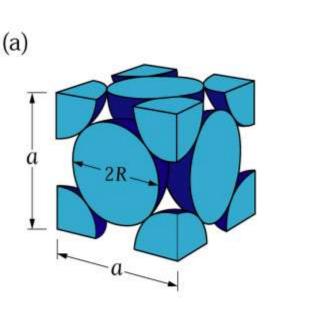


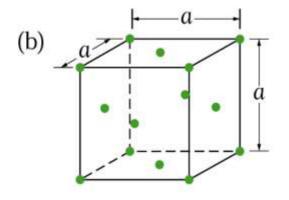
Adapted from Fig. 3.2, Callister & Rethwisch 3e.

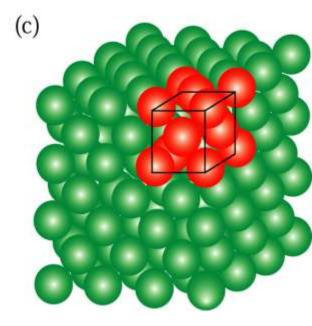
2 atoms/unit cell: 1 center + 8 corners x 1/8

3 of 4 basic atomic arrangements

3. Face-centered cubic (fcc) also known as Cubic close packing







Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

Coordination # = 12



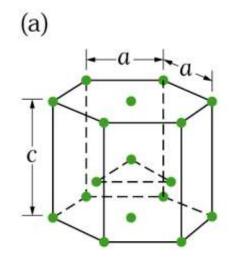
Adapted from Fig. 3.1, Callister & Rethwisch 3e.

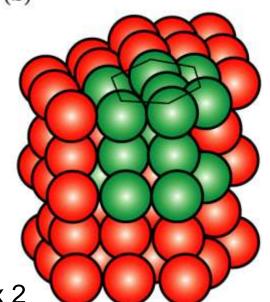
4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

4 of 4 basic atomic arrangements

4. Hexagonal close-packed (hcp)

ex: Cd, Mg, Ti, Zn



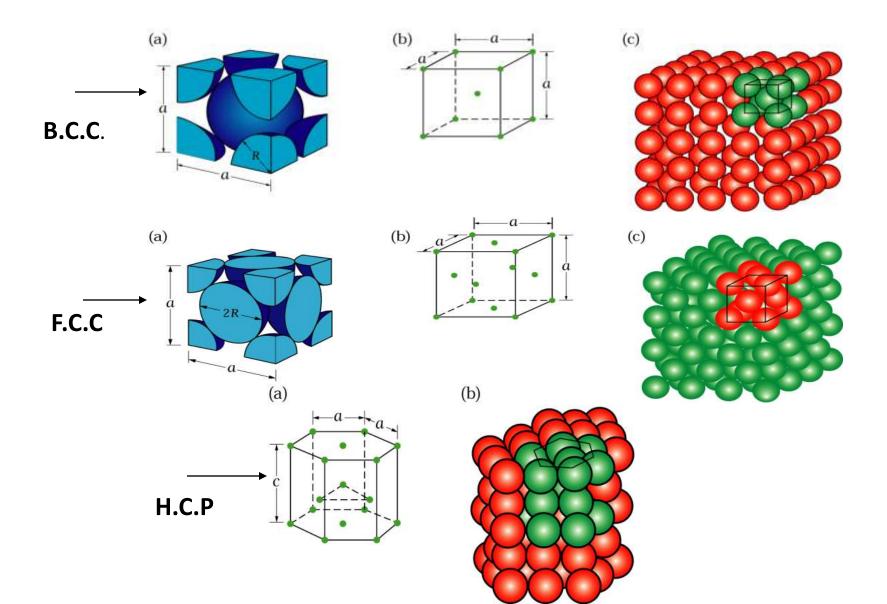


6 atoms/unit cell: 3 center + ½ x 2

top and bottom + 1/6 x 12 corners

Coordination # = 12

Review of the three basic Atomic Structures

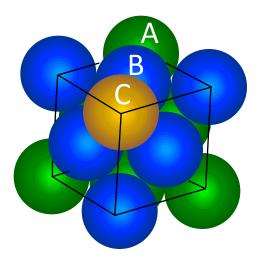


FCC Stacking Sequence

ABCABC... Stacking Sequence

2D Projection
 A sites
 B sites
 C sites

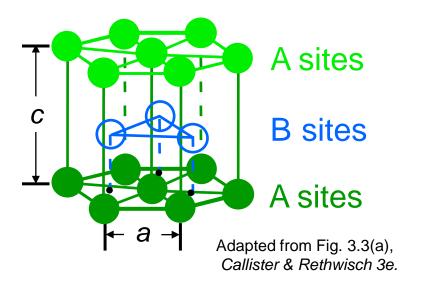
FCC Unit Cell

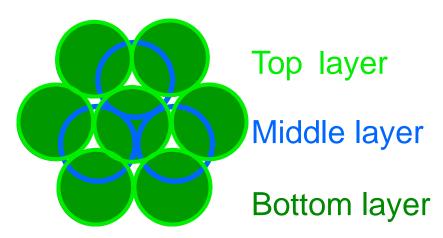


Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

2D Projection





ATOMIC PACKING FACTOR

- Fill a box with hard spheres
 - Packing factor = total volume of spheres in box/ volume of box
 - Question: what is the maximum packing factor you can expect?
- In crystalline materials:
 - Atomic packing factor = total volume of atoms in unit cell / volume of unit cell
 - (as unit cell repeats in space)

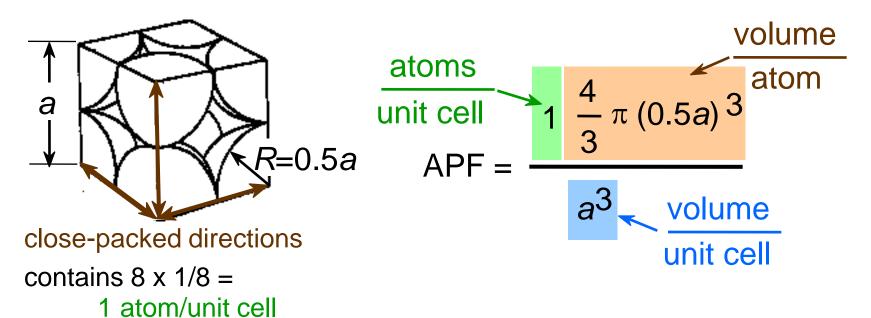
Atomic Packing Factor (APF)

APF = Volume of atoms in unit cell*

Volume of unit cell

*assume hard spheres

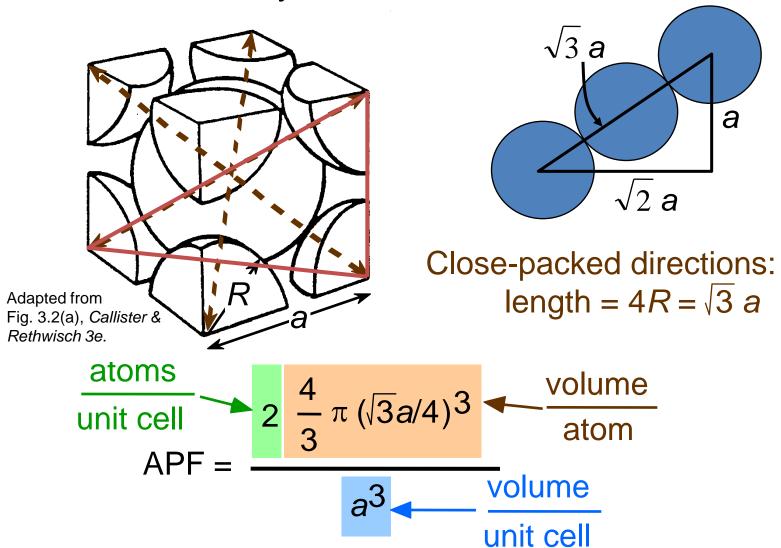
APF for a simple cubic structure = 0.52



Adapted from Fig. 3.42, Callister & Rethwisch 3e.

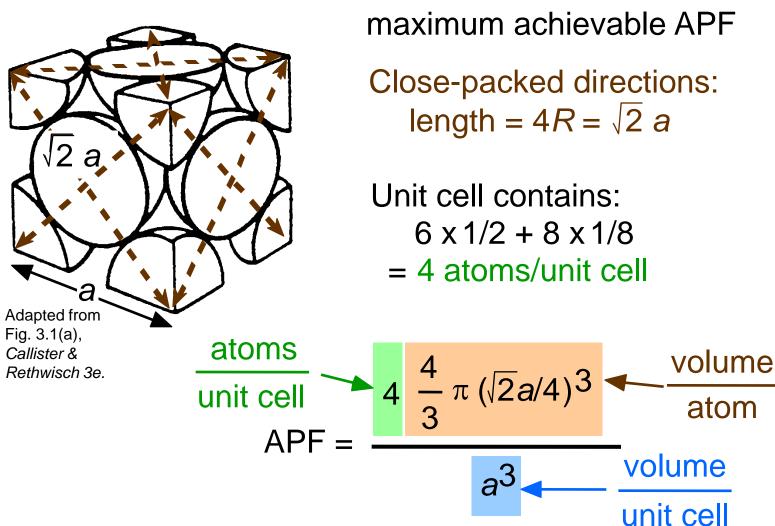
Atomic Packing Factor: BCC

• APF for a body-centered cubic structure = 0.68



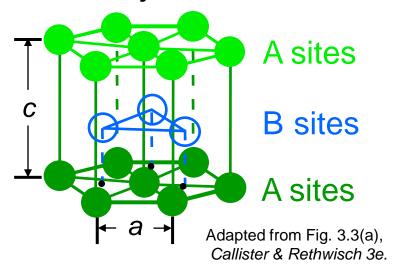
Atomic Packing Factor: FCC

• APF for a face-centered cubic structure = 0.74

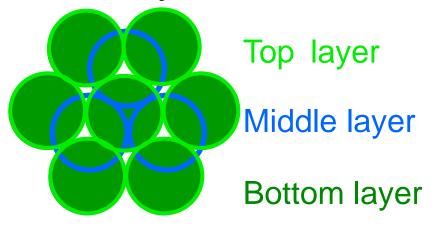


Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection



2D Projection



- Coordination # = 12
- APF = 0.74
- c/a = 1.633

6 atoms/unit cell

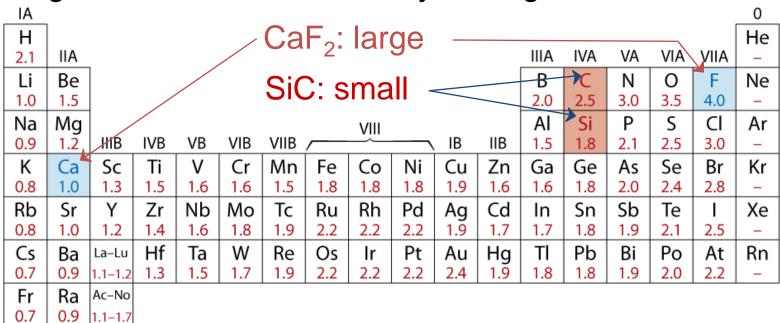
COMPARISON OF CRYSTAL STRUCTURES

Crystal structure	packing factor		
Simple Cubic (SC)	0.52		
Body Centered Cubic (BCC)	0.68		
 Face Centered Cubic (FCC) 	0.74		
 Hexagonal Close Pack (HCP) 	0.74		

Ceramic Crystal Structures

Atomic Bonding in Ceramics

- Bonding:
 - -- Can be ionic and/or covalent in character.
 - -- % ionic character increases with difference in electronegativity of atoms.
- Degree of ionic character may be large or small:

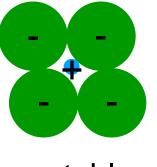


Adapted from Fig. 2.7, *Callister & Rethwisch 3e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

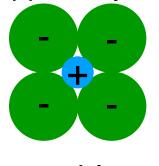
Factors that Determine Crystal Structure

1. Relative sizes of ions – Formation of stable structures:

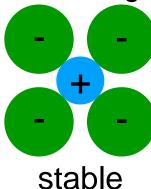
--maximize the # of oppositely charged ion neighbors.



unstable



stable



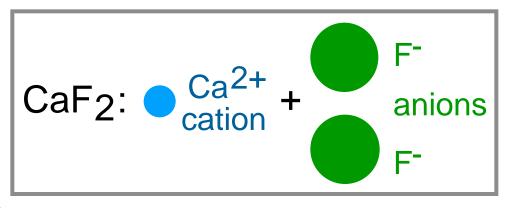
Adapted from Fig. 3.4, Callister & Rethwisch 3e.

Maintenance of Charge Neutrality :

--Net charge in ceramic should be zero.

--Reflected in chemical

formula:



m, p values to achieve charge neutrality

Coordination # and Ionic Radii

Coordination # increases with

Callister & Rethwisch 3e.

r_{cation}

To form a stable structure, how many anions can surround around a cation?

_	rcation C	oor #	d			ZnS (zinc blende)
	< 0.155	2	linear	0.0	A	Adapted from Fig. 3.7, Callister & Rethwisch 3e.
	0.155 - 0.225	3	triangular	8		NaCl (sodium
	0.225 - 0.414	4	tetrahedral			chloride) Adapted from Fig. 3.5, Callister & Rethwisch 3e.
	0.414 - 0.732	6	octahedral	©		CsCl (cesium
	0.732 - 1.0 Adapted from Table	8 3.3,	cubic	88	,	chloride) Adapted from Fig. 3.6, Callister & Rethwisch 3e.

Example Problem: Predicting the Crystal Structure of FeO

 On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation Ionic radius (nm)

AI3+	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069

Ca²⁺ 0.100

Anion

O ² -	0.140
CI-	0.181
F-	0 133

Answer:

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.077}{0.140}$$
$$= 0.550$$

based on this ratio, -- coord # = 6 because

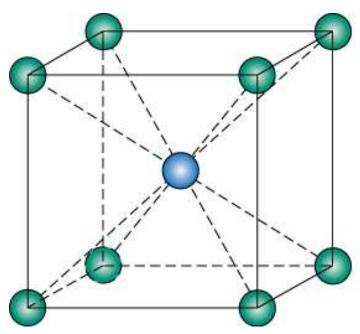
0.414 < 0.550 < 0.732

-- crystal structure is NaCl

Data from Table 3.4, Callister & Rethwisch 3e.

AX Crystal Structures

- Equal No. of cations and anions
- AX—Type Crystal Structures include NaCl, CsCl, and zinc blende



Cesium Chloride structure:

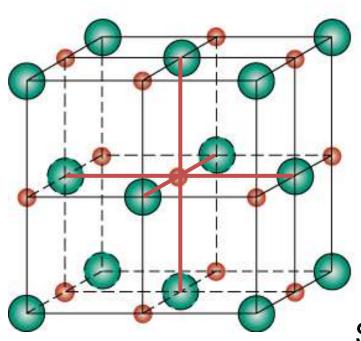
$$\frac{Cs^+}{r_{Cl}^-} = \frac{0.170}{0.181} = 0.939$$

∴ Since 0.732 < 0.939 < 1.0, cubic sites preferred

So each Cs⁺ has 8 neighbor Cl⁻

Adapted from Fig. 3.6, Callister & Rethwisch 3e.

Rock Salt Structure



Adapted from Fig. 3.5, Callister & Rethwisch 3e.

$$o$$
 Na⁺ $r_{Na} = 0.102 \text{ nm}$

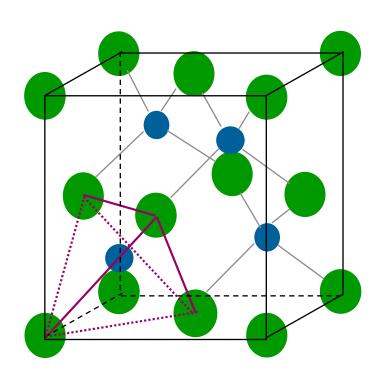
$$r_{CI} = 0.181 \text{ nm}$$

$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

∴ Since 0.414 < 0.564 < 0.732,Octahedral sites preferred

So each Na⁺ has 6 neighbor Cl⁻

Zinc Blende (ZnS) Structure



Zn ²⁺

S 2

 $r_{\rm Zn}/r_{\rm S} = 0.074/0.184 = 0.402$

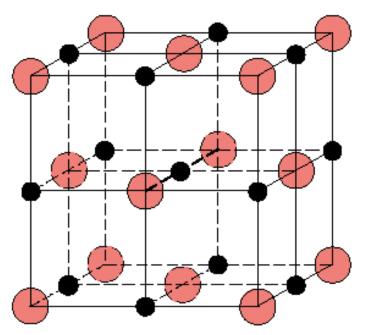
∴ Since 0.225< 0.402 < 0.414, tetrahedral sites preferred</p>

Adapted from Fig. 3.7, Callister & Rethwisch 3e.

So each Zn⁺⁺ has 4 neighbor S⁻⁻

MgO and FeO

MgO and FeO also have the NaCl structure



$$r_{\rm O} = 0.140 \; \rm nm$$

$$r_{\rm Mg} = 0.072 \; \rm nm$$

$$r_{\rm Mg}/r_{\rm O} = 0.514$$

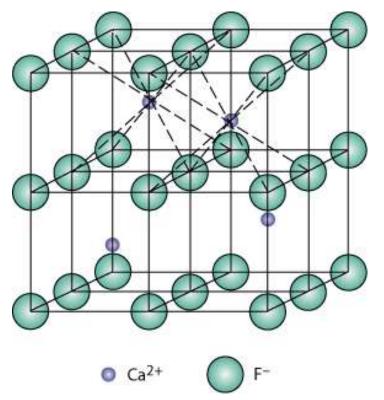
: cations prefer octahedral sites

Adapted from Fig. 3.5, Callister & Rethwisch 3e.

So each Mg²⁺ (or Fe²⁺) has 6 neighbor oxygen atoms

A_mX_pCrystal Structures

m and/or p \neq 1, e.g AX₂



- Calcium Fluorite (CaF₂)
- Cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- Antifluorite structure –
 positions of cations and
 anions reversed

Adapted from Fig. 3.8, Callister & Rethwisch 3e.

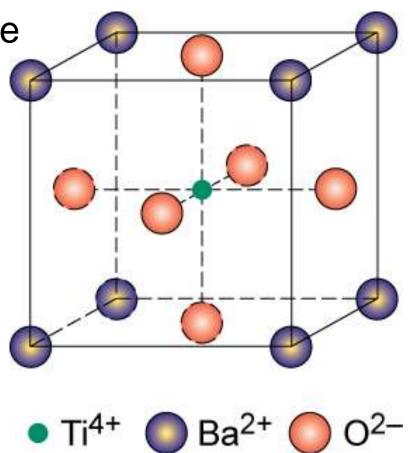
Fluorite structure

ABX₃ Crystal Structures

Perovskite structure

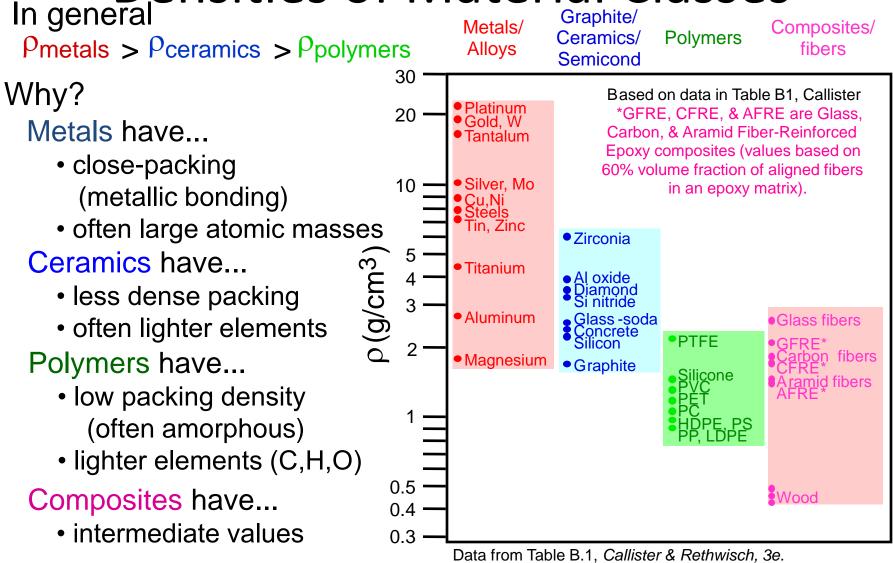
Ex: complex oxide BaTiO₃

Adapted from Fig. 3.9, Callister & Rethwisch 3e.



37

Densities of Material Classes



Crystals as Building Blocks

- Some engineering applications require single crystals:
 - -- diamond single crystals for abrasives

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.)

Fig. 9.40(c), Callister & Rethwisch 3e. (Fig. 9.40(c) courtesy of Pratt and

-- turbine blades

Whitney).

- Properties of crystalline materials often related to crystal structure.
 - -- Ex: Quartz fractures more easily along some crystal planes than others.

(Courtesy P.M. Anderson)

Polycrystals

Anisotropic

Most engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of *Callister 5e*. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

Nb-Hf-W plate with an electron beam weld.

- Each "grain" is a single crystal.
- If grains are randomly oriented, overall component properties are not directional.
- Grain sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

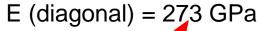
Isotropic

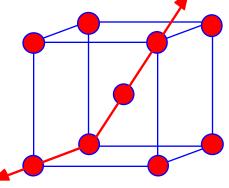
Single vs Polycrystals

- Single Crystals
 - -Properties vary with direction: anisotropic.
 - -Example: the modulus of elasticity (E) in BCC iron:
- Polycrystals
 - -Properties may/may not vary with direction.
 - -If grains are randomly oriented: isotropic.

 $(E_{poly iron} = 210 GPa)$

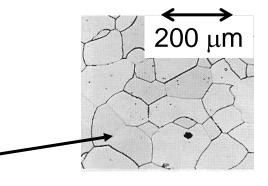
-If grains are textured, anisotropic.

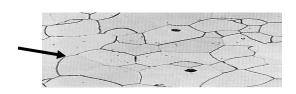




E (edge) = 125 GPa

Data from Table 3.7, Callister & Rethwisch 3e. (Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.)





Adapted from Fig. 5.19(b), Callister & Rethwisch 3e. (Fig. 5.19(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].)

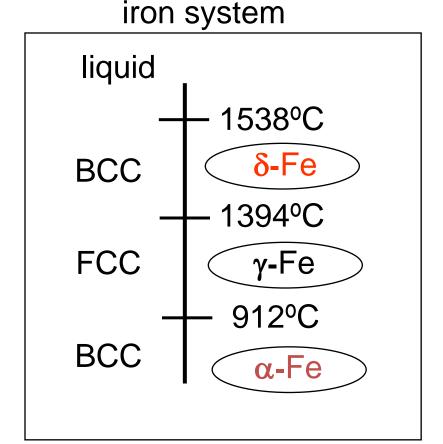
Polymorphism

 Two or more distinct crystal structures for the same material (allotropy/polymorphism)

titanium

 α , β -Ti

carbon diamond, graphite



Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

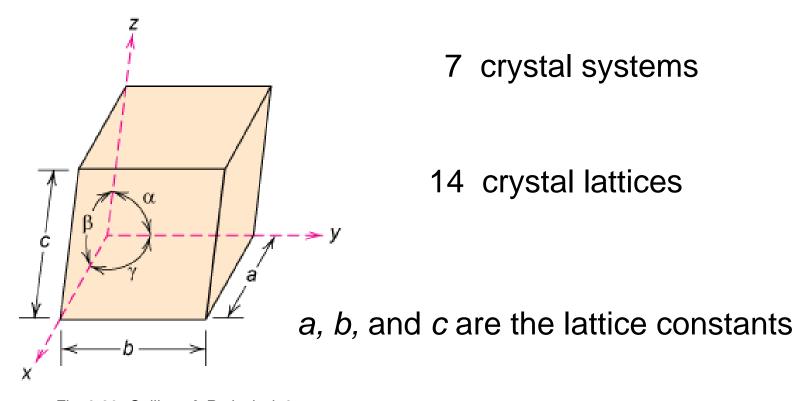
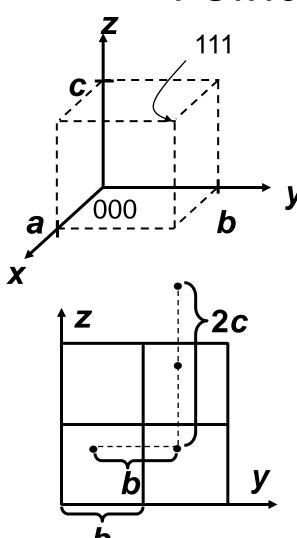


Fig. 3.20, Callister & Rethwisch 3e.

Point Coordinates



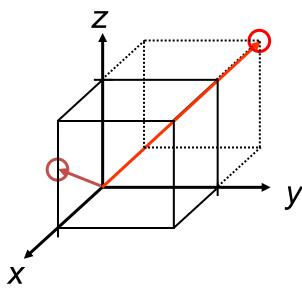
Point coordinates for unit cell center are

$$a/2$$
, $b/2$, $c/2$ $\frac{1}{2}\frac{1}{2}\frac{1}{2}$

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants → identical position in another unit cell

Crystallographic Directions



Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions *a*, *b*, and *c*
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas [uvw]

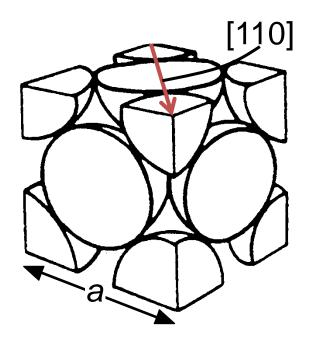
ex: 1, 0,
$$\frac{1}{2}$$
 => 2, 0, 1 => [201]
-1, 1, 1 => [111] where overbar represents a negative index

families of directions < uvw>

Linear Density

Linear Density of Atoms = LD =

Number of atoms
Unit length of direction vector

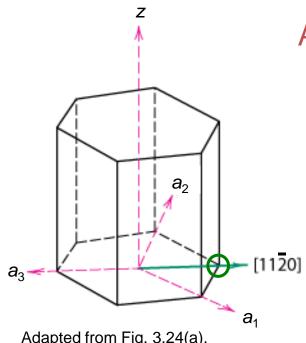


ex: linear density of Al in [110] direction

$$a = 0.405 \text{ nm}$$

atoms
$$LD = \frac{2}{\sqrt{2}a} = \frac{3.5 \text{ nm}^{-1}}{}$$
length

HCP Crystallographic Directions

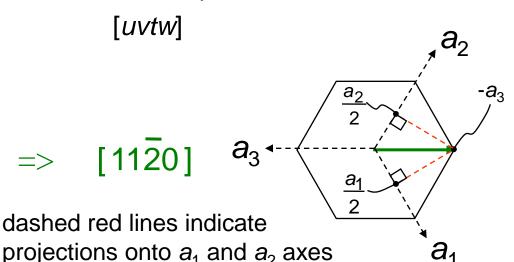


Adapted from Fig. 3.24(a), Callister & Rethwisch 3e.

ex: $\frac{1}{2}$, $\frac{1}{2}$, -1, 0 => [1120]

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions a_1 , a_2 , a_3 , or c
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas



HCP Crystallographic Directions

Hexagonal Crystals

 4 parameter Miller-Bravais lattice coordinates are related to the direction indices (i.e., u'v'w') as follows.

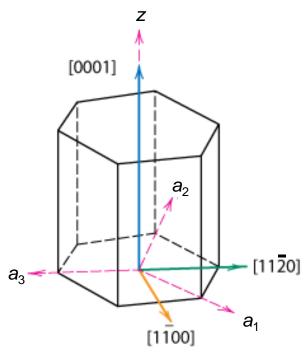


Fig. 3.24(a), Callister & Rethwisch 3e.

$$[u'v'w'] \rightarrow [uvtw]$$

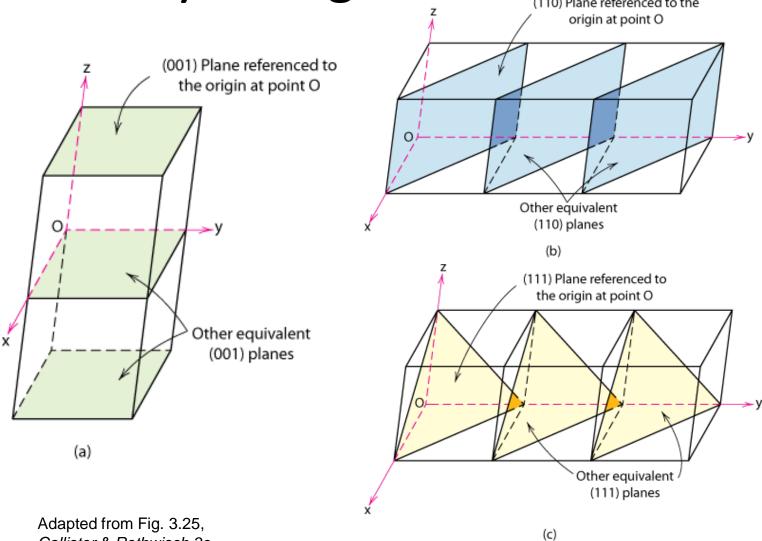
$$u = \frac{1}{3}(2u'-v')$$

$$v = \frac{1}{3}(2v'-u')$$

$$t = -(u+v)$$

$$w = w'$$

Crystallographic Planes
(110) Plane referenced to the



Callister & Rethwisch 3e.

 Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.

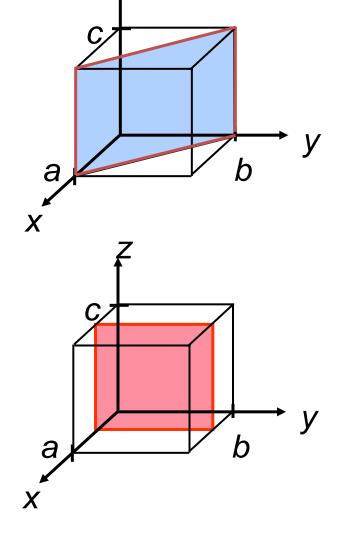
Algorithm

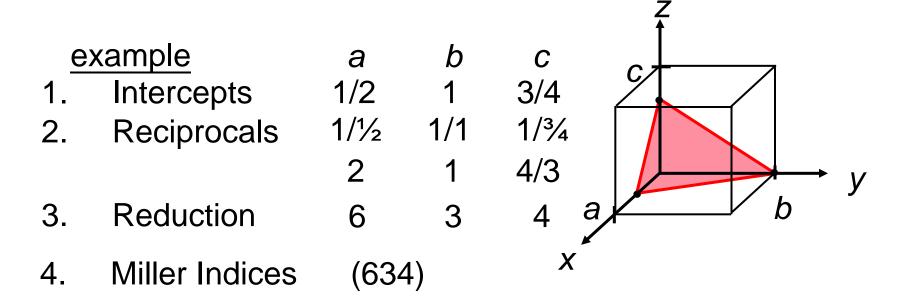
- 1. Read off intercepts of plane with axes in terms of *a*, *b*, *c*
- 2. Take reciprocals of intercepts
- 3. Reduce to smallest integer values
- 4. Enclose in parentheses, no commas i.e., (hkl)

<u>example</u>		b	C
Intercepts	1	1	∞
Reciprocals	1/1	1/1	1/∞
·	1	1	0
Reduction	1	1	0
	Intercepts Reciprocals	Intercepts 1 Reciprocals 1/1	Intercepts 1 1 Reciprocals 1/1 1/1 1 1

4.	Miller	Indices	(110)
↔.	IVIIIICI	ii luices	(110)

example		a	b	С
1.	Intercepts	1/2	∞	∞
2.	Reciprocals	1/1/2	1/∞	1/∞
		2	0	0
3.	Reduction	2	0	0
4.	Miller Indices	(100)		



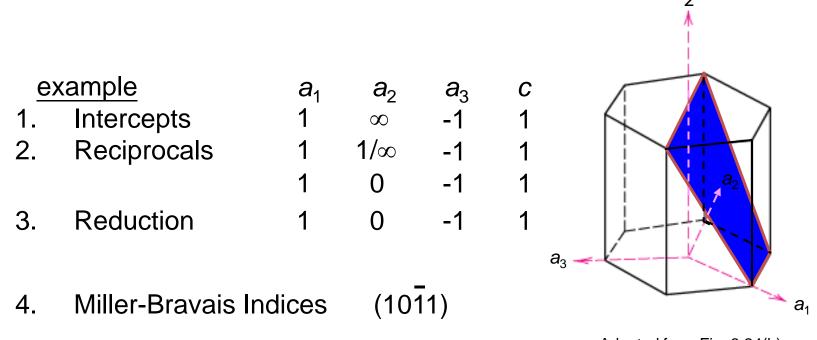


Family of Planes {hkl}

Ex: $\{100\} = (100), (010), (001), (\bar{1}00), (0\bar{1}0), (00\bar{1})$

Crystallographic Planes (HCP)

In hexagonal unit cells the same idea is used

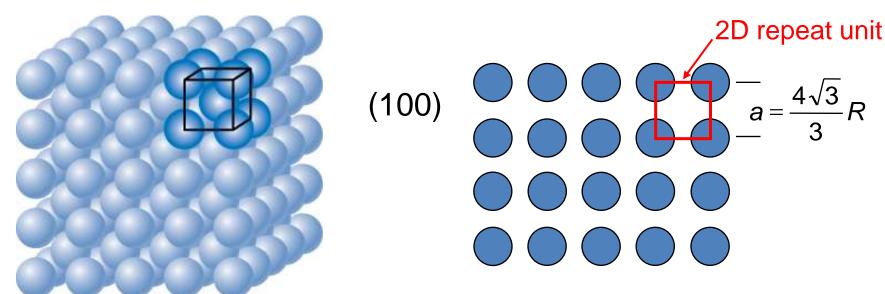


Adapted from Fig. 3.24(b), Callister & Rethwisch 3e.

- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
 - a) Draw (100) and (111) crystallographic planes for Fe.
 - b) Calculate the planar density for each of these planes.

Planar Density of (100) Iron

Solution: At T < 912°C iron has the BCC structure.



Adapted from Fig. 3.2(c), Callister & Rethwisch 3e.

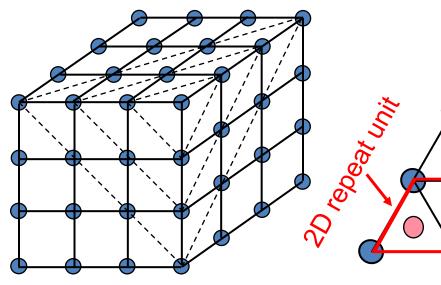
Radius of iron R = 0.1241 nm

Planar Density =
$$\frac{1}{a^2} = \frac{1}{\left(\frac{4\sqrt{3}}{3}R\right)^2} = 12.1 \frac{\text{atoms}}{\text{nm}^2} = \frac{1.2 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}}{1.2 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}}$$

Planar Density of (111) Iron

Solution (cont): (111) plane

1 atom in plane/ unit surface cell



- - atoms in plane
 - atoms above plane
 - atoms below plane

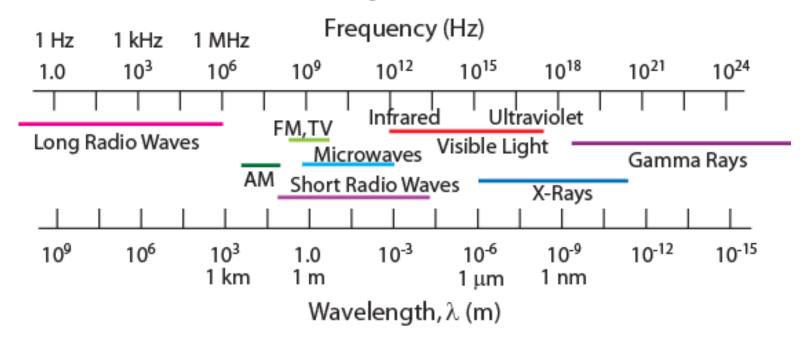
area =
$$\sqrt{2} ah = \sqrt{3} a^2 = \sqrt{3} \left(\frac{4\sqrt{3}}{3} R^{\frac{1}{2}} \right)^2 = \frac{16\sqrt{3}}{3} R^2$$

$$\frac{16\sqrt{3}}{3}R^2$$

$$7.0\frac{\text{atoms}}{\text{nm}^2} =$$

$$0.70 \times 10^{19} \frac{\text{atoms}}{\text{m}^2}$$

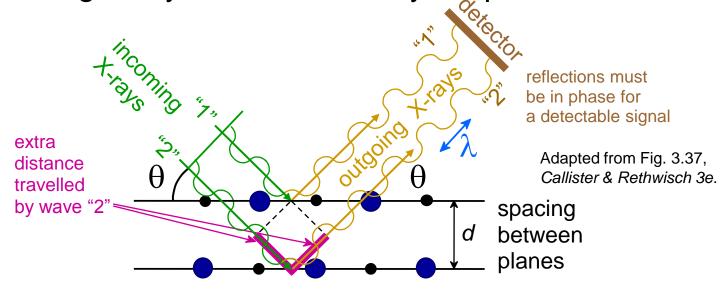
X-Rav Diffraction Electromagnetic Spectrum



- Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings $< \lambda$
- Spacing is the distance between parallel planes of atoms.

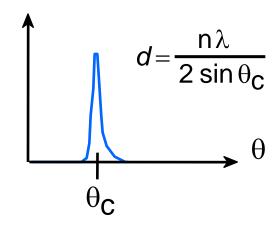
X-Rays to Determine Crystal Structure

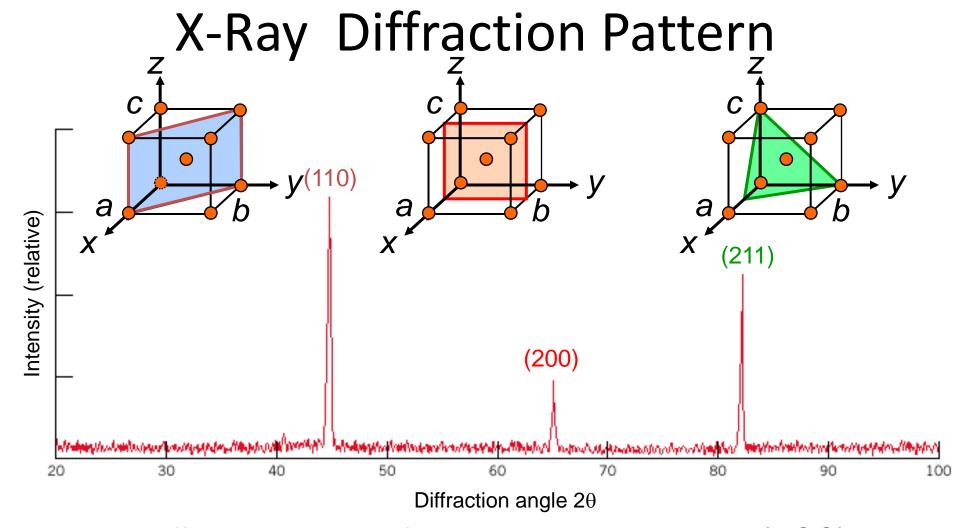
Incoming X-rays diffract from crystal planes.



Measurement of critical angle, θ_c , allows computation of planar spacing, d.

X-ray intensity (from detector)





Diffraction pattern for polycrystalline α -iron (BCC)

Adapted from Fig. 3.20, Callister 5e.

SUMMARY

- Atoms may assemble into crystalline or amorphous structures.
- Common metallic crystal structures are FCC, BCC, and HCP.
 Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
 - -- maintaining charge neutrality
 - -- cation-anion radii ratios.
- Crystallographic points, directions and planes are specified in terms of indexing schemes. Crystallographic directions and planes are related to atomic linear densities and planar densities.

SUMMARY

- Materials can be single crystals or polycrystalline.
 Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.
- Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy).
- X-ray diffraction is used for crystal structure and interplanar spacing determinations.